Numerical Solution of Integro-Differential Equations with Local Polynomial Regression

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Solution of Integro-Differential Equations with Local Polynomial Regression

In this paper, we try to find numerical solution of               b  d , . a y x p x y x g x K x t y t t y a a x b a t b              d , . , a y x p x y x g x K x t y t t y a a x b a t b                   d x t y t t y a      a or               x  by using Local polynomial regression (LPR) method. The numerical solution shows th...

متن کامل

Numerical Solution of Singular Integro-differential Equations with Cauchy Kernel

The main purpose of this article is to present an approximation method of for singular integrodifferential equations with Cauchy kernel in the most general form under the mixed conditions in terms of the second kind Chebyshev polynomials. This method transforms mixed singular integro-differential equations with Cauchy kernel and the given conditions into matrix equation and using the zeroes of ...

متن کامل

Application of the block backward differential formula for numerical solution of Volterra integro-differential equations

In this paper, we consider an implicit block backward differentiation formula (BBDF) for solving Volterra Integro-Differential Equations (VIDEs). The approach given in this paper leads to numerical methods for solving VIDEs which avoid the need for special starting procedures. Convergence order and linear stability properties of the methods are analyzed. Also, methods with extensive stability r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Open Journal of Statistics

سال: 2012

ISSN: 2161-718X,2161-7198

DOI: 10.4236/ojs.2012.23043